A monolithic micro-tensile tester fabricated by femtosecond laser to inves- tigate fused silica mechanical properties

نویسندگان

  • Christos-Edward Athanasiou
  • Yves Bellouard
چکیده

We present an experimental method to fill in the existing gap of characterization tools for the mechanical testing of fused silica and silica’s polymorphic phases in the microand nanoscales. The approach is based on a monolithic tensile tester, entirely made of fused silica for which the same femtosecond laser in not only used for the fabrication of the device, but also for its operation (loading the specimen) as well as for in situ measuring deformations resulting from the test beam’s elongation, thanks to the use of the third harmonic generation (THG). The use of the THG as an inline laser metrology tool is extensively discussed. The validity of the experimental approach is presented by the direct elastic modulus measurement of fused silica at high stresses up to 1.8 GPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monolithic Micro-Tensile Tester for Investigating Silicon Dioxide Polymorph Micromechanics, Fabricated and Operated Using a Femtosecond Laser

Mechanical testing of materials at the microscales is challenging. It requires delicate procedures not only for producing and handling the specimen to be tested, but also for applying an accurate and controlled force. This endeavor is even more challenging when it comes to investigating the behavior of brittle materials such as glass. Here, we present a microtensile tester for investigating sil...

متن کامل

A Monolithic Micro-Tensile Tester for Investigating Silicon Dioxide Polymorph Micromechanics, Fabricated and Operated Using a Femtosecond Laser

Mechanical testing of materials at the microscales is challenging. It requires delicate procedures not only for producing and handling the specimen to be tested, but also for applying an accurate and controlled force. This endeavor is even more challenging when it comes to investigating the behavior of brittle materials such as glass. Here, we present a microtensile tester for investigating sil...

متن کامل

Three-Dimensional Glass Monolithic Micro-Flexure Fabricated by Femtosecond Laser Exposure and Chemical Etching

Flexures are components of micro-mechanisms efficiently replacing classical multi-part joints found at the macroscale. So far, flexures have been limited to two-dimensional planar designs due to the lack of a suitable three-dimensional micromanufacturing process. Here we demonstrate and characterize a high-strength transparent monolithic three-dimensional flexural component fabricated out of fu...

متن کامل

On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited]

This paper reports on the mechanical properties of fused silica flexures manufactured by a two-step process combining femtosecond lasers exposure below the ablation threshold and chemical etching. Flexural strengths as high as 2.7 GPa were measured, demonstrating that femtosecond lasers can be efficiently used to produce arbitrarily shaped high-strength mechanical devices, opening new opportuni...

متن کامل

Control of multiphoton and avalanche ionization using an ultraviolet- infrared pulse train in femtosecond laser micro-/nano-machining of fused silica

We report on the experimental results of microand nanostructures fabricated on the surface of fused silica by a train of two femtosecond laser pulses, a tightly focused 266 nm (ultraviolet, UV) pulse followed by a loosely focused 800 nm (infrared, IR) pulse. By controlling the fluence of each pulse below the damage threshold, microand nanostructures are fabricated using the combined beams. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015